Bootstrap confidence intervals for design storms from exceedance series
نویسندگان
چکیده
The design quantiles of storms are derived directly in terms of design life and the risk of occurrence. Estimators for these quantiles based on exceedance series are discussed for the cases of Poisson and negative binomial storm arrival processes. The use of Bootstrap methods to estimate confidence intervals for the design quantiles is demonstrated. Interval de confiance "bootstrap" pour les averses du projet d'après les séries au dépassement Résumé Les quantiles d'averse du projet sout obtenus directement en fontion de la durée de l'ouvrage et du risque d'occurrence. Les estimateurs des quantiles basés sur les séries au dépassements sont analysés pour les cas de processus d'averses se produissant d'après les modèles de Poisson et négatif binomial. On montre l'utilité des methods "bootstrap" pour l'estimation des intervalles de confiance des quantiles du projet.
منابع مشابه
Bootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملBootstrap Confidence Intervals Based on Inverting Hypothesis Tests
Most confidence intervals, whether based on asymptotic theory or the bootstrap, are implicitly based on inverting a Wald test. Since Wald test statistics are not invariant under nonlinear reparametrizations of the restrictions they test, confidence intervals based on them are not invariant either. This fact explains the well-known non invariance of bootstrap confidence intervals obtained by Hal...
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کامل